
Package: haze (via r-universe)
November 3, 2024

Type Package

Title Smoothing of per-Vertex Data on Triangular Meshes

Version 0.2.0

Maintainer Tim Schäfer <ts+code@rcmd.org>

Description Smoothing of per-vertex data on triangular meshes, sub
mesh creation based on vertex indices, per-vertex data
interpolation based on k-d trees.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/dfsp-spirit/haze

BugReports https://github.com/dfsp-spirit/haze/issues

SystemRequirements C++11

Imports freesurferformats (>= 0.1.17), Rcpp (>= 1.0.6), Rvcg (>=
0.20.2)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), rgl, fsbrain (>=
0.5.3)

VignetteBuilder knitr

RoxygenNote 7.1.2

Config/testthat/edition 3

LinkingTo Rcpp

Repository https://dfsp-spirit.r-universe.dev

RemoteUrl https://github.com/dfsp-spirit/haze

RemoteRef HEAD

RemoteSha dfccb658d0772f7e6d755ab0e4a29354592cddd0

1

https://github.com/dfsp-spirit/haze
https://github.com/dfsp-spirit/haze/issues


2 linear_interpolate_kdtree

Contents

haze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
linear_interpolate_kdtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
mesh.adj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
mesh.neigh.pre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
nn_interpolate_kdtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
pervertexdata.smoothnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
pervertexdata.smoothnn.adj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
read.vv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
submesh.vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Index 9

haze haze: Smoothing of per-vertex data on triangular meshes

Description

Smoothing of per-vertex data on triangular meshes

linear_interpolate_kdtree

Interpolate per-vertex data at the query points. Or map per-vertex
data between subjects.

Description

This method uses inverse distance weight interpolation within a triangle. First, the face of the mesh
that the query_coordinate falls into is determined. Then results in 3 vertices with respective per-
vertex data, and a query coordinate. We then compute the distance to all 3 vertices, and perform
inverse distance weight interpolation with a beta setting defined by parameter iwd_beta.

Usage

linear_interpolate_kdtree(
query_coordinates,
mesh,
pervertex_data,
iwd_beta = 2,
...

)



mesh.adj 3

Arguments

query_coordinates

nx3 numerical matrix of x,y,z coordinates. These are typically the vertex posi-
tions of a second (spherical!) mesh for that you need per-vertex data (e.g., the
fsaverage6 mesh).

mesh fs.surface instance, see read.fs.surface or subject.surface to get one, or
turn an rgl tmesh into one with tmesh3d.to.fs.surface.

pervertex_data numerical vector, the continuous per-vertex data for the vertices of the mesh.

iwd_beta scalar double, the beta parameter for the inverse distance weight interpolation
with the triangle. See details.

... ignore, passed on to internal function interp_tris.

Value

named list with entries: ’interp_values’, the numerical vector of interpolated data at the query_coordinates.
’nearest_vertex_in_face’ the nearest vertex in the face that the respective query coordinate falls into,
’nearest_face’ the index of the nearest face that the respective query coordinate falls into.

Note

The mesh must be spherical, and the query_coordinates must also be located on the mesh sphere.

mesh.adj Compute vertex neighborhoods for a mesh.

Description

Compute vertex neighborhoods for a mesh.

Usage

mesh.adj(surface, k = 1L)

Arguments

surface a mesh, represented as an fs.surface instance from the freesurferformats
package or a tmesh3d instance from rgl, or a character string representing the
path of a mesh to load with freesurferformats::read.fs.surface.

k scalar positive integer, the k value for the k-ring neighborhood. For k=1, this
function computes the adjacency list representation of the graph (where the
neighbors include the vertex itself).

Value

list of integer vectors, the neighborhood data



4 nn_interpolate_kdtree

Examples

## Not run:
mesh = rgl::tetrahedron3d();
mesh_adj = mesh.adj(mesh, k = 1L);

## End(Not run)

mesh.neigh.pre Return pre-computed neighborhood data for specific meshes.

Description

Return pre-computed neighborhood data for specific meshes.

Usage

mesh.neigh.pre(meshname)

Arguments

meshname a text identifier specifying the mesh you want connectivity data for. Currently
supported meshes are listed here. ’lh_fsaverage’: the left hemisphere of the
FreeSurfer 6 fsaverage template. ’rh_fsaverage’: the right hemisphere of the
FreeSurfer 6 fsaverage template. ’lh_fsaverage6’: the left hemisphere of the
FreeSurfer 6 fsaverage6 template. ’rh_fsaverage6’: the right hemisphere of the
FreeSurfer 6 fsaverage6 template.

Value

list of vectors, the connectivity data as an adjacency list. The outer list has length n, where n is the
number of vertices in the graph. The inner lists represent, for each vertex, all of its neighbors.

nn_interpolate_kdtree Get per-vertex data at vertices closest to the given query coordinates
on the mesh.

Description

Return per-vertex data at the vertices closest to the given query points.

Usage

nn_interpolate_kdtree(query_coordinates, mesh, pervertex_data)



pervertexdata.smoothnn 5

Arguments

query_coordinates

nx3 numerical matrix of x,y,z coordinates. These are typically the vertex posi-
tions of a second (spherical!) mesh for that you need per-vertex data (e.g., the
fsaverage6 mesh).

mesh fs.surface instance, see read.fs.surface or subject.surface to get one, or
turn an rgl tmesh into one with tmesh3d.to.fs.surface.

pervertex_data numerical vector, the continuous per-vertex data for the vertices of the mesh.

Value

the per-vertex data for the vertices closest to the query coordinates.

pervertexdata.smoothnn

Smooth per-vertex data based on mesh.

Description

Smooth per-vertex data based on mesh.

Usage

pervertexdata.smoothnn(surface, pvdata, num_iter, k = 1L, method = "C++")

Arguments

surface a mesh, represented as an fs.surface instance from the freesurferformats
package or a tmesh3d instance from rgl, or a character string representing the
path of a mesh to load with freesurferformats::read.fs.surface.

pvdata numerical vector of per-vertex-data for the mesh, one value per vertex. Data val-
ues of NA will be ignored, allowing you to mask parts of the data. If you pass an
n x m matrix or data.frame, the n rows will be treated as (independent) overlays
that should be smoothed in parallel. To set the number of cores to use for paral-
lel processing, set the ’mc_cores’ option like this: options("mc.cores"=22L);
before calling this function. Data.frames and matrices with a single row will be
converted to vectors, and the return value will be a vector in that case.

num_iter positive integer, number of smoothing iterations.

k scalar positive integer, the k value for the k-ring neighborhood. For k=1, this
function computes the adjacency list representation of the graph (where the
neighbors include the vertex itself).

method character string, one of ’C++’ or ’R’. The C++ version is much faster (about
30 times faster on our test machine), and there is little reason to ever use the R
version in production code, so just ignore this.



6 pervertexdata.smoothnn.adj

Value

numerical vector, the smoothed data.

See Also

pervertexdata.smoothnn.adj if you already have pre-computed adjacency data for the mesh.
Using that data can increase performance considerably, especially if you need to smooth many data
sets.

Examples

## Not run:
mesh = rgl::tetrahedron3d();
pvd = rnorm(nrow(mes2$vb), mean = 5.0, sd = 1.0);
pvd_smoothed = pervertexdata.smoothnn(mesh, pvd, num_iter = 30L);

## End(Not run)

pervertexdata.smoothnn.adj

Smooth per-vertex data using nearest-neighbor smoothing based on
mesh adjacency information.

Description

Smooth per-vertex data using nearest-neighbor smoothing based on mesh adjacency information.

Usage

pervertexdata.smoothnn.adj(
mesh_adj,
pvdata,
num_iter,
method = "C++",
silent = getOption("haze.silent", default = TRUE)

)

Arguments

mesh_adj list of vectors of integers, the adjacency list representation of the mesh. One can
use the pre-computed adjacency for some special meshes, see mesh.neigh.pre.
Data for vertices should include the vertex itself.

pvdata numerical vector of per-vertex-data for the mesh, one value per vertex. Data val-
ues of NA will be ignored, allowing you to mask parts of the data. If you pass an
n x m matrix or data.frame, the n rows will be treated as (independent) overlays



read.vv 7

that should be smoothed in parallel. To set the number of cores to use for paral-
lel processing, set the ’mc_cores’ option like this: options("mc.cores"=22L);
before calling this function. Data.frames and matrices with a single row will be
converted to vectors, and the return value will be a vector in that case.

num_iter positive integer, number of smoothing iterations.

method character string, one of ’C++’ or ’R’. The C++ version is much faster (about
30 times faster on our test machine), and there is little reason to ever use the R
version in production code, so just ignore this.

silent logical, whether to suppress output messages.

Value

numerical vector, the smoothed data (for vector input). If pvdata is a matrix or a data.frame (with
more than a single column), the result is also a matrix or data.frame.

See Also

pervertexdata.smoothnn if you have a mesh and still need the connectivity to be computed.

Examples

## Not run:
mesh = rgl::tetrahedron3d();
mesh_adj = mesh.adj(mesh, k = 1L);
pvd = rnorm(nrow(mesh$vb), mean = 5.0, sd = 1.0);
pvd_smoothed = pervertexdata.smoothnn.adj(mesh_adj, pvd, num_iter = 30L);

## End(Not run)

read.vv Read vv binary file.

Description

Read matrix-like data from vv files. This is a custom format from the cpp_geodesic repo, designed
to allow fast reading of vector-of-vectors data. The format does NOT require that all inner vectors
have the same length, so it is NOT limited to matrices. The format is designed for storing graphs as
adjacency lists.

Usage

read.vv(filepath)

Arguments

filepath string. Full path to the input vv file.



8 submesh.vertex

Value

list of vectors, the data. The vv files may can store double or int, which is encoded in the file header
and used accordingly.

submesh.vertex Create a submesh including only the given vertices.

Description

Create a submesh including only the given vertices.

Usage

submesh.vertex(surface_mesh, old_vertex_indices_to_use, ret_mappings = FALSE)

Arguments

surface_mesh an fs.surface instance, the original mesh. See read.fs.surface or subject.surface
to get one. Can also be an rgl tmesh, see tmesh3d.

old_vertex_indices_to_use

integer vector, the vertex indices of the ’surface_mesh’ that should be used to
construct the new sub mesh.

ret_mappings whether to return the vertex mappings. If TRUE, the return value becomes a list
with entries ’submesh’, ’vmap_full_to_submesh’, and ’vmap_submesh_to_full’.

Value

the new mesh, made up of the given ’old_vertex_indices_to_use’ and all (complete) faces that exist
between the query vertices in the source mesh. But see ’ret_mapping’ parameter.

Examples

## Not run:
if(requireNamespace("fsbrain, quietly=T")) {
sjd = fsbrain::fsaverage.path(T);
sj = "fsaverage";
mesh = fsbrain::subject.surface(sjd, sj, hemi="lh");
lab = fsbrain::subject.label(sjd, sj, "cortex", hemi = "lh");
sm = submesh.vertex(mesh, lab);
fsbrain::vis.fs.surface(mesh); # show the full mesh.
fsbrain::vis.fs.surface(sm); # show only the cortex.
}
## End(Not run)



Index

haze, 2

linear_interpolate_kdtree, 2

mesh.adj, 3
mesh.neigh.pre, 4, 6

nn_interpolate_kdtree, 4

pervertexdata.smoothnn, 5, 7
pervertexdata.smoothnn.adj, 6, 6

read.fs.surface, 3, 5, 8
read.vv, 7

subject.surface, 3, 5, 8
submesh.vertex, 8

tmesh3d, 8
tmesh3d.to.fs.surface, 3, 5

9


	haze
	linear_interpolate_kdtree
	mesh.adj
	mesh.neigh.pre
	nn_interpolate_kdtree
	pervertexdata.smoothnn
	pervertexdata.smoothnn.adj
	read.vv
	submesh.vertex
	Index

